AGEniX System Overview
Version: 1.0 Status: Canonical High-Level Architecture Last Updated: 2025-11-17
This document provides a high-level overview of the AGEniX ecosystem architecture. For implementation-specific details, refer to individual component repositories.
Table of Contents
- Introduction
- Core Philosophy
- System Components
- Execution Model
- Communication Architecture
- Security Model
- Data Flow
- Future Extensions
1. Introduction
The AGEniX ecosystem is a minimal, Unix-philosophy-aligned system for agentic plan generation and deterministic execution on local hardware.
Key Objectives
- Local-first execution: Run entirely on your hardware with zero cloud dependencies
- LLM-assisted planning: Use AI to generate execution plans, not to execute them
- Deterministic execution: Plans are JSON specifications executed consistently
- Composable tools: Single-purpose Agentic Units (AUs) that combine via stdin/stdout
- Zero-trust execution: Isolated, sandboxed tool execution with minimal privileges
Target Use Cases
- Batch data processing: Transform datasets using composable AU tools
- Document analysis: OCR, extraction, summarization pipelines
- Research workflows: Orchestrate analysis tools across large datasets
- Local AI workflows: Chain together local AI models without cloud APIs
2. Core Philosophy
2.1 Unix Philosophy Alignment
AGEniX adheres to classic Unix principles:
- Small, focused tools: Each AU does one thing well
- Composability: Tools chain via stdin/stdout piping
- Text as universal interface: JSON for structured data, plain text for everything else
- Separation of concerns: Planning ≠ Scheduling ≠ Execution
2.2 Zero External Dependencies
- Pure Rust binaries (cross-platform: macOS, Linux)
- Embedded database (redb) - no separate database servers
- No cloud services - runs entirely local
- Self-contained deployment - single binary per component
2.3 Clear Separation of Responsibilities
AGX → Planning (generates JSON plans using LLMs)
AGQ → Scheduling (queues jobs, tracks state, manages workers)
AGW → Execution (runs deterministic plan steps)
AUs → Tools (single-purpose specialized capabilities)
3. System Components
3.1 AGX - Planner/Orchestrator
Purpose: Convert natural-language intents into deterministic JSON plans
Key Features:
- LLM-assisted plan generation (dual-model: Echo + Delta)
- Tool registry awareness (via
--describecontracts) - Local or distributed execution modes
- Job submission to AGQ
- Operations monitoring (jobs, workers, queue stats)
Modes:
PLANmode: Create, preview, and submit plansOPSmode: Monitor jobs, workers, queue status- Future: Interactive REPL
See: agx/docs/ARCHITECTURE.md for implementation details
3.2 AGQ - Queue Manager/Scheduler
Purpose: Manage job queuing, scheduling, and worker coordination
Key Features:
- Embedded redb database (single-file ACID storage)
- RESP protocol server (Redis-compatible API)
- Job lifecycle tracking (pending → running → completed/failed)
- Worker registration and heartbeat monitoring
- Plan storage and reuse
- Action fan-out (one Plan → many Jobs)
Security:
- Session-key authentication for all commands
- Rate limiting on authentication attempts
- Input validation and sanitization
- No plan contents in logs (security-critical)
See: agq/ARCHITECTURE.md for implementation details
3.3 AGW - Worker
Purpose: Execute deterministic plan steps in isolation
Key Features:
- RESP client (connects to AGQ)
- Stateless execution (no plan state maintained)
- Sequential task execution
- stdin/stdout piping between tasks
- Fail-fast behavior (halt on first error)
- Capability-based registration
Security:
- No LLM access (deterministic execution only)
- Session-key authentication
- Tool execution sandboxing
- Timeout enforcement per task
- Resource limits
See: agw/docs/ARCHITECTURE.md for implementation details
3.4 Agentic Units (AUs)
Purpose: Composable, single-purpose tools that implement specific capabilities
Examples:
agx-ocr: Document OCR using DeepSeek models- Future:
agx-summarize,agx-extract,agx-embed, etc.
Contract Requirements:
--describeflag returns JSON model card (capabilities, inputs, outputs)- stdin → stdout operation
- Exit codes for success/failure
- JSON-structured output (when applicable)
See: docs/au-specs/agentic-unit-spec.md for AU contract specification
4. Execution Model
AGEniX uses a five-layer execution model for clear nomenclature and separation of concerns.
The Five Execution Layers
| Layer | Name | Description | Created By | Executed By | Managed By |
|---|---|---|---|---|---|
| 1 | Task | Atomic tool/AU call (stdin → stdout) | AGX | AGW | - |
| 2 | Plan | Ordered list of Tasks (reusable definition) | AGX | AGW | AGQ |
| 3 | Job | Runtime execution of a Plan (with specific input) | AGQ | AGW | AGQ |
| 4 | Action | Many Jobs (same Plan, different inputs) | AGX | AGW (many) | AGQ |
| 5 | Workflow | Multi-Action orchestration (future) | AGX | AGQ/AGW | AGQ |
See: execution-layers.md for detailed specification
5. Communication Architecture
5.1 Protocol: RESP (Redis Protocol)
All AGEniX components communicate using RESP (REdis Serialization Protocol):
- Why RESP? Simple, text-based, well-tested, Redis-compatible
- Transport: TCP sockets (future: Unix domain sockets, mTLS)
- Authentication: Session-key based (32+ byte cryptographic random keys)
5.2 Key API Commands
AGX → AGQ:
PLAN.SUBMIT <json_plan> # Store a Plan
ACTION.SUBMIT <json_action> # Create Jobs from Plan + inputs
JOB.STATUS <job_id> # Query Job status
JOB.LIST <action_id> # List Jobs for an Action
AGW → AGQ:
AUTH <session_key> # Authenticate worker
WORKER.REGISTER <capabilities> # Register worker capabilities
BRPOP queue:ready # Pull next Job from queue
JOB.UPDATE <job_id> <status> # Report Job progress
See: docs/tools/tool-contracts.md and future docs/api/resp-protocol.md
6. Security Model
6.1 Zero-Trust Execution
AGEniX assumes all execution is untrusted:
- Workers cannot access LLMs or external APIs
- Tools execute in isolation with minimal privileges
- No inter-worker communication (embarrassingly parallel)
- Session keys required for all authenticated operations
6.2 Security Layers
Authentication:
- Session-key based (constant-time comparison)
- Key rotation support
- No credentials in logs or error messages
Input Validation:
- Strict JSON schema validation
- Command injection prevention
- Path traversal prevention
- Resource limits (max plan size, task count, timeout)
Execution Isolation:
- Tools run as separate processes
- Timeout enforcement per task
- No shell interpretation (direct process spawning)
- stdout/stderr capture and sanitization
See: docs/zero-trust/zero-trust-execution.md for detailed security architecture
7. Data Flow
7.1 Typical Workflow
┌─────────────────────────────────────────────────────────────┐
│ 1. User provides natural-language intent + input data │
└─────────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ 2. AGX (Planner) │
│ - Consults tool registry (--describe contracts) │
│ - Uses LLM to generate JSON Plan │
│ - Validates Plan against schema │
└─────────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ 3. Local or Distributed Execution? │
│ ┌────────────────┐ ┌─────────────────┐ │
│ │ Local (Phase 1)│ │ Distributed │ │
│ │ AGX executes │ │ Submit to AGQ │ │
│ │ directly │ │ │ │
│ └────────────────┘ └────────┬────────┘ │
└─────────────────────────────────────────────┼───────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ 4. AGQ (Queue Manager) │
│ - Stores Plan (reusable) │
│ - Creates Job(s) with input data │
│ - Enqueues to queue:ready │
│ - Tracks Job state │
└─────────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ 5. AGW (Worker) - pulls Job via BRPOP │
│ - Validates session key │
│ - Executes Tasks sequentially │
│ - Pipes stdout between Tasks (input_from_task) │
│ - Captures stdout/stderr/exit codes │
│ - Halts on first failure │
└─────────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ 6. Results returned to AGQ │
│ - Job status updated (completed/failed) │
│ - Outputs stored │
│ - Logs captured │
└─────────────────────────────┬───────────────────────────────┘
│
▼
┌─────────────────────────────────────────────────────────────┐
│ 7. User retrieves results via AGX │
│ - Query Job status │
│ - Fetch outputs │
│ - Review logs │
└─────────────────────────────────────────────────────────────┘
7.2 Action Fan-Out (Batch Processing)
AGX: Create Action (1 Plan + N inputs)
↓
AGQ: Fan out to N Jobs
↓
AGW Workers: Pull Jobs in parallel
↓
AGQ: Aggregate results
↓
AGX: Retrieve all results
8. Future Extensions
Phase 2: Enhanced Capabilities
- Graph-based execution (DAGs instead of linear plans)
- Workflow orchestration (chained Actions with conditionals)
- AU lifecycle manager (install, update, version management)
- Semantic tool registry (LLM-searchable capability database)
Phase 3: Distributed Enhancements
- Clustered AGQ (multi-node queue manager)
- Worker capability matching (schedule Jobs to specialized workers)
- Result streaming (real-time Job output)
- Advanced retry strategies (exponential backoff, circuit breakers)
Phase 4: Observability & Operations
- Metrics and monitoring (Prometheus integration)
- Distributed tracing (OpenTelemetry)
- Web UI for operations (Job visualization, debugging)
- Agent evaluation framework (AU performance benchmarks)
Security Enhancements
- Unix domain sockets (eliminate network exposure)
- mTLS for distributed deployments
- Scoped session keys (per-worker, per-job)
- Audit logging (compliance, forensics)
Related Documentation
Architecture
- Execution Layers - Canonical nomenclature (Task, Plan, Job, Action, Workflow)
- Job Schema - Job envelope specification
- AGX Dual-Model Planning - Echo/Delta planning architecture
- Component Boundaries - Detailed responsibilities
Specifications
- Agentic Unit Spec - AU contract requirements
- Tool Contracts -
--describeand CLI behavior
Security
- Zero-Trust Execution - Security model and constraints
Deployment
- Deployment Overview - Deployment patterns and topologies
Planning
- Planner Models - LLM backend configuration
Glossary
- AU (Agentic Unit): Single-purpose tool that implements a specific capability
- Task: Atomic execution unit (single tool/AU call)
- Plan: Reusable definition of ordered Tasks
- Job: Runtime instance of a Plan with specific input data
- Action: Batch execution of same Plan with multiple inputs
- Workflow: Multi-Action orchestration with conditional logic (future)
- RESP: REdis Serialization Protocol (communication standard)
- Session Key: Cryptographic authentication token
Maintained by: AGX Core Team Review cycle: Quarterly or on major architectural changes Questions? Start with execution-layers.md for nomenclature